HHP/HPH COVID-19 Community Webinar Series

Monday, September 28, 2020 5:30pm – 6:30pm

HAWAI'I PACIFIC HEALTH

HAWAI'I HEALTH PARTNERS

Moderator - 09/28/20

Andy Lee, MD

Medical Director, *Hawai'i Health Partners* Chief of Staff, *Pali Momi Medical Center* Hawai'i Pacific Health

HAWAI'I PACIFIC HEALTH

HAWAI'I HEALTH PARTNERS

Disclaimer:

- The following is intended as information resource only for HHP/HPH providers, clinicians, administrative and clinical leaders.
- Specific areas may not pertain directly to your clinical practice area and/or may not be applicable to your practice based on your existing workflows, infrastructure, software (e.g. EHR), and communications processes.

3

Webinar Information

- You have been automatically muted. You cannot unmute yourself.
- You will be able to submit questions via the Q&A section.
 - Due to time constraints, any unanswered questions will be addressed this week and posted on the HHP website
- A recording of the meeting will be available tomorrow on the HHP website and intranet.

How to Claim CME Credit

1. Step 1: Confirm your attendance

 You should have completed a brief questionnaire before joining today's live webinar.

2. Step 2: HPH CME team will email you instructions

- Complete and submit evaluation survey that will be emailed to you within one week of the offering.
- Your CE certificate will be immediately available to you upon completion of your evaluation.
- Questions? Email
 <u>hphcontinuingeduc@hawaiipacifichealth.org</u>

CME Accreditation Statement

- In support of improving patient care, Hawai'i Pacific Health is jointly accredited by the Accreditation Council for Continuing Medical Education (ACCME), the Accreditation Council for Pharmacy Education (ACPE), and the American Nurses Credentialing Center (ANCC), to provide continuing education for the healthcare team.
- Hawai'i Pacific Health designates this webinar activity for a maximum of 1.0 AMA PRA Category 1 Credit (s) ™ for physicians. This activity is assigned 1.0 contact hour for attendance at the entire CE session.

JOINTLY ACCREDITED PROVIDER™

INTERPROFESSIONAL CONTINUING EDUCATION

Disclosures

 The planners and presenters of this activity report no relationships with companies whose products or services (may) pertain to the subject matter of this meeting

COVID-19 Updates

Melinda Ashton, MD Executive Vice President and Chief Quality Officer Hawai'i Pacific Health

Douglas Kwock, MD Vice President of Medical Staff Affairs

Gerard Livaudais, MD, MPH Executive Vice President, Population Health and Provider Networks Hawai'i Pacific Health

Shilpa Patel, MD Pediatric Hospitalist, Kapi'olani Medical Center Physician Liaison, Quality & Patient Safety Hawai'i Pacific Health

HAWAI'I HEALTH PARTNERS

Projected Active COVID-19 Cases Hawaii Actual v. Projected Active COVID-19 Cases Updated 9/28/2020 Projected (21-Days) --- ICU Capacity Calculated (21-Days) 6,000 Shelter # of Active Cases to Exceed ICU Capacity: 4.5K Restarted 2% of active cases require ICU care, Adult ICUs at 64% occupancy COVID cases are active for 21 days after positive result 5,000 Active cases are decreasing by ~20% each week Active COVID-19 Cases 4,000 Active Cases: 2244 Shelter Shelter 3,000 Ended Started Reopening 2,000 1.000 0 3/6/2020 4/6/2020 5/6/2020 6/6/2020 7/6/2020 8/6/2020 9/6/2020 10/6/2020 11/6/2020

WORLD / COUNTRIES / USA / HAWAII

Last updated: September 29, 2020, 01:38 GMT

Hawaii

Coronavirus Cases: 12,203

 $R_t = 0.96$

Deaths: If Total Case is 10x # confirmed cases, then = 8% Herd Immunity (122,030 / 1,415,872)

Recovered: **10,215**

As of 09/28/20	Total Census	ICU beds occupied	# Ventilators in use	# New Admissions w/ COVID-19 screening	# New Admissions w/ positive COVID-19	# Patients currently hospitalized w/ suspect or confirmed COVID-19	 # Patients currently on a ventilator w/ suspect or confirmed COVID-19 	# Patients currently in ICU w/ suspect or confirmed COVID-19
KMCWC	155	AICU: 0 NICU: 68 PICU: 5	AICU: 0 NICU: 22 PICU: 3 Wilcox: 0	0	1	S: 1 (Peds) C: 1 (Adult)	S: 0 C: 0	S: 0 C: 0
РММС	77	7	6	3	0	S: 0 C: 9	S: 0 C: 2	S: 0 C: 2
SMC	123	21	15	5	1	S: 3 C: 30	S: 0 C: 6	S: 0 C: 7
WMC	41	3	0	0	0	S: 1 C: 0	S: 0 C: 0	S: 0 C: 0

S = Suspected; C= Confirmed

CREATING A HEALTHIER HAWAI'I

HAWAI'I

HEALTH

PARTNERS

HAWAI'I

PACIFIC

HEALTH

Weekly number of deaths

Comparing excess deaths including/excluding COVID-19

https://www.cdc.gov/nchs/nvss/vsrr/covid19/excess_deaths.htm#dashboard accessed 09.26.20

HAWAI'I HAWAI'I PACIFIC HEALTH HEALTH PARTNERS

Coronavirus situation in the US

Total deaths as of 1.01pm September 28 BST

Graphic: Steven Bernard and Cale Tilford Sources: Covid Tracking Project © FT Mapping the coronavirus outbreak

As of 1.01pm September 28 BST

Graphic: Steven Bernard and Cale Tilford Sources: ECDC; Covid Tracking Project; FT research © FT

India's death toll surges as the Americas continue to struggle with Covid-19

Daily deaths of patients diagnosed with coronavirus (7-day rolling average)

https://www.ft.com/content/a2901ce8-5eb7-4633-b89c-cbdf5b386938 accessed 09.28.20

CREATING A HEALTHIER HAWAI'I

HEALTH

PARTNERS

PACIFIC

HEALTH

83% Sensitivity, 96% Specificity, pennies per test and extremely scalable?

https://bmcinfectdis.biomedcentral.com/articles/10.1186/s12879-020-05281-3 accessed 09.26.20

Care of the COVID-19 Survivor – in it for the Long Haul

John Mickey, MD Internal Medicine, Hawai'i Pacific Health Medical Group

Gerard Livaudais, MD, MPH

Executive Vice President, Population Health and Provider Networks Hawai'i Pacific Health

HAWAI'I PACIFIC HEALTH

HAWAI'I HEALTH PARTNERS

Question

Does COVID-19 result in unique long term medical problems that merit development of new, multi-disciplinary "best practice" approaches?

or

Should symptoms in the COVID-19 survivor be managed in standard Internal Medicine fashion on an individualized basis?

19

Since COVID-19 is so new, there is no long term imaging or functional data on survivors. So, what can we learn from previous Corona virus infections?

Following SARS-1 outbreak in 2003:

- 40% of patients had reduced exercise capacity after three months
- 1/3 had X-ray abnormalities at 6 months, correlating with impaired diffusion capacity
- Fifteen years later, 5% of patients had residual lung changes CT scan

Following MERS_CoV outbreak in 2012:

• 1/3 of the patients had lung fibrosis on CT six weeks later

What do we know about the experience of COVID-19 survivors? How big will this problem be?

- 2/3 of patients hospitalized in the US have not returned to baseline three weeks after discharge
- 1/3 of symptomatic, non-hospitalized Americans have not returned to baseline three weeks after diagnosis
- Close to 90% of patients hospitalized in Italy have not returned to baseline 3 months after discharge
- Even among young patients with no co-morbidities 20% have symptoms longer than two to three weeks
- The British Medical Journal estimates that about 10% of all patients will have persistent symptoms

Expression profiling of ACE2 Putative receptor of SARS-CoV-2 С

PARTNERS 22

HAWAIʻI

HEALTH

SHORT REPORT

A mechanistic model and therapeutic interventions for COVID-19 involving a RAS-mediated bradykinin storm

Michael R Garvin¹, Christiane Alvarez¹, J Izaak Miller¹, Erica T Prates¹, Angelica M Walker^{1,2}, B Kirtley Amos³, Alan E Mast⁴, Amy Justice⁵, Bruce Aronow^{6,7}, Daniel Jacobson^{1,2,8}*

(cc)

Figure 4. Systemic-level effects of critically imbalanced RAS and BK pathways. The gene expression patterns from COVID BAL samples reveal a RAS that is skewed toward low levels of ACE that result in higher levels of Ang₁₋₉ and BK. High levels of ACE normally present in the lungs are responsible for generating system-wide angiotensin-derived peptides. As detailed in *Figure 2*, the Bradykinin-Storm is likely to affect major organs that are regulated by angiotensin derivatives. These include altered electrolyte balance from affected kidney and heart tissue, arrhythmia in dysregulated cardiac tissue, neurological disruptions in the brain, myalgia in muscles and severe alterations in oxygen uptake in the lung itself. Red colors indicate upregulation and blue downregulation.

What are patients experiencing?

3 weeks out: Morbidity and Mortality Weekly Report

6 weeks out:

FIGURE. Self-reported symptoms at the time of positive SARS-CoV-2 reverse transcription–polymerase chain reaction (RT-PCR) testing results and unresolved symptoms 14–21 days later among outpatients (N = 274)* — 14 academic health care systems,[†] United States, March–June 2020

Figure. COVID-19-Related Symptoms

The figure shows percentages of patients presenting with specific coronavirus disease 2019 (COVID-19)-related symptoms during the acute phase of the disease (left) and at the time of the follow-up visit (right).

M Tenforde, et al. Symptom Duration and Risk Factors for Delayed Return to Usual Health Among Outpatients with COVID-19 in a Multistate Health Care Systems Network — United States, March–June 2020 MMWR / July 31, 2020 / Vol. 69 / No. 30 B Saloner, K Parish, J Ward, G DiLaura, S Dolovich,. Persistent Symptoms in PatientsAfterAcuteCOVID-19. Published Online: July 9, 2020. doi:10.1001/jama.2020.12603

PULMONARY PROBLEMS

- Cough, dyspnea, and chest pain are common
- Reactive airway disease can contribute to cough and dyspnea
- Pulmonary fibrosis can be seen on imaging
- PE and Chronic Thromboembolic Pulmonary Hypertension
- Tracheal stenosis had been reported after prolonged intubation
- Spontaneous pneumothorax should be suspected when symptoms suggest

Pulmonary Problems

Figure 1 (A) Plain chest radiograph in a male patient with COVID-19 pneumonia referred for extracorporeal membrane oxygenation support. (B) CT images showing broadly symmetrical air space opacification with dependent dense parenchymal opacification and extensive ground-glass opacification with thickened interlobular and intralobular septa (the 'crazy-paving' pattern) in the non-dependent lung. Note that the airways are conspicuous against the ground-glass opacification but, importantly, taper normally (arrows) and have smooth walls. (C) CT performed 10 days later

George PM, Barratt SL, Condliffe R, et al.. Thorax Epub ahead of print: 08.24.20 doi:10.1136/thoraxjnl-2020-215314

PULMONARY

CARDIAC PROBLEMS

- Palpitations are common, mostly sinus tachycardia
- New atrial fibrillation is seen
- Myocarditis can be seen in ICU, but studies of residual MRI abnormalities in survivors are small and uncontrolled
- Personal communication tells me subclinical myocarditis has not been observed in a large Boston cohort
- Others with no prior heart disease developed post viral heart failure
- Deconditioning is a major problem

JAMA Cardiology | Original Investigation

Outcomes of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered From Coronavirus Disease 2019 (COVID-19)

Valentina O. Puntmann, MD, PhD; M. Ludovica Carerj, MD; Imke Wieters, MD; Masia Fahim; Christophe Arendt, MD; Jedrzej Hoffmann, MD; Anastasia Shchendrygina, MD, PhD; Felicitas Escher, MD; Mariuca Vasa-Nicotera, MD; Andreas M. Zeiher, MD; Maria Vehreschild, MD; Eike Nagel, MD

Table 2. Results of the Receiver O	perating Characteristic Curve Analys	es
rable is results of che receiver of	bendening endiaceensee een verindigs	- 1

	COVID-19 vs healthy controls		COVID-19 vs risk factor-matched controls		
Characteristic	AUC (95% CI)	P value	AUC (95% CI)	P value	
Native T1	0.86 (0.80-0.92)	<.001	0.76 (0.69-0.83)	<.001	
Native T2	0.84 (0.78-0.91)	<.001	0.79 (0.73-0.85)	<.001	
LVEF	0.70 (0.62-0.79)	<.001	0.62 (0.52-0.71)	.01	
LVEDV index	0.65 (0.56-0.73)	.001	0.67 (0.58-0.75)	<.001	
LV mass index	0.60 (0.49-0.70)	.07	0.63 (0.54-0.71)	<.001	
RVEF	0.74 (0.66-0.83)	.001	0.61 (0.52-0.70)	.02	
hsTnT	0.79 (0.72-0.86)	<.001	0.72 (0.57-0.76)	<.001	
NT-proBNP	0.56 (0.46-0.65)	.21	0.52 (0.44-0.61)	.58	
High-sensitivity CRP	0.54 (0.44-0.64)	.48	0.60 (0.52-0.76)	.05	

GLOBAL PROBLEMS

- Fatigue, fever, chills, headache, diaphoresis, arthralgia, malaise, are common.
- "Brain fog," impaired cognition, concentration, balance, and ocular function are well documented. Long term neurologic inflammation has been suggested.
- Myalgic encephalomyelitis / chronic fatigue syndrome
- Loss of olfactory senses
- Diarrhea
- Relapsing course
- Coagulopathy? COVID toes
- Post Intensive Care Syndrome, including Critical Illness Polyneuropathy and Critical Illness Myopathy may require prolonged rehabilitation services.
- Autonomic dysregulation. Postural Orthostatic Tachycardia Syndrome.

HAWAI'I HAWAI'I PACIFIC HEALTH HEALTH PARTNERS

Cerebral Micro-Structural Changes in COVID-19 Patients – An MRI-based 3-month Follow-up Study

Yiping Lu, MD^{a,1}, Xuanxuan Li, MD^{a,1}, Daoying Geng, MD, Prof^{a,1}, Nan Mei, MD^{a,1}, Pu-Yeh Wu, PhD^b, Chu-Chung Huang, PhD^c, Tianye Jia, PhD^d, Yajing Zhao, MD^a, Dongdong Wang, MD^a, Anling Xiao, MD, Prof^{e,**}, Bo Yin, PhD, Prof^{a,*}

Figure 2. The regions with statistically significant differences in the volumes and diffusion indices of the COVID-19 group compared with the control group. The regions with relative higher mean values in the COVID-19 group were marked as red, and the regions with relative lower mean values in the COVID-19 group were marked as blue. GMV: gray matter volume; MD GM: mean diffusivity of gray matter; MD WM: mean diffusivity of white matter; AD WM: axial diffusivity of white matter.

PSYCHOLOGICAL

- PTSD, anxiety, guilt, and depression are expected consequences of COVID-19
- Mental health complications are strongly correlated with social determinants of health
- Support networks are springing up on social media for Long Haul COVID Fighters:

- COVID-19 Survivor Corps, etc.

- Acknowledge, support, treat when clearly indicating, avoiding overtreating
 - "Medicalization"

SOCIAL/FINANCIAL/OCCUPATIONAL

 COVID-19 patients face societal discrimination, loss of income, loss of insurance, and significant disruption of employment.

FINAL QUESTION

- How can we show our COVID-19 survivors that we care?
- Should HHP create a Covid-19 Survivor Recovery Program?
- How should that be organized? Funded? Staffed?

PARTNERS

HEALTH

COVID-19: Clinical-Pathologic Correlations and What Post-Mortem Findings Tell Us

Owen Chan, MD, PhD

Pathology, Pan Pacific Pathologists Laboratory Medical Director, Pali Momi Medical Center, Clinical Labs of Hawai'i

What are the clinical characteristics of ill patients?
Clinical Characteristics of COVID-19: Meta-analysis

Outcomes				Critical illness			
				No. reports	No. patients	Prevalence% (95%CI)	
C	linical sym	ptoms					
	Fever			6	364	80.8 (41.1-100.0)	
Ŋ	Cough			6	364	65.6 (51.7-78.2)	
rato	Sore throat			3	245	16.7 (0.0-53.2)	
idse	Increased s	sputum productio	n	3	222	32.1 (15.6-51.0)	
Å	Shortness	of breath		6	364	49.2 (21.5-77.2)	
	Myalgia	Musculoskeletal		5	351	17.6 (8.2-29.5)	
	Fatigue Diarrhea Gastrointestinal			4	299	41.2 (5.2-84.0)	
				4	234	7.6 (0.0-24.0)	
Headache Neurologic			4	274	11.3 (0.1-33.9)		

Affects multiple systems

-	Outcomes	Critical illness			
_		No. reports	No. patient	s Prevalence% (9	95%CI)
-	Laboratory findings				
	Leucocytes (1)	2	186	27.7 (0.0-100.0)	
	Leucocytes (\downarrow)	3	216	33.7 (0.00-95.7)	
Hematologic	Lymphocytes (\downarrow)	3	203	81.5 (18.9-100.0)	
	Platelets (\downarrow)	2	169	32.3 (0.0-100.0)	
Hepatic	Aspartate aminotransferase ([†])	2	155	46.1 (0.0-100.0)	
	Creatinine (↑)	2	151	6.4 (0.0, 100.0)	Affects
	Creatine kinase (↑)	2	134	28.6 (0.0-100.0)	multiplo
	Lactate dehydrogenase (1)	3	173	62.7 (55.7-100.0)	multiple
	C-reactive protein (↑)	2	171	40.3 (0.0-100.0)	systems
	D-dimer (↑)	2	109	59.6 (50.2-68.7)	
	Procalcitonin (↑)	3	165	35.7 (0.0-100.0)	
	Chest CT findings				
	Bilateral pneumonia	2	186	91.0 (0.0-100)	
Pulmonary	Complications				
	ARDS	4	315	38.2 (3.2-83.0)	
Cardiovascular	Cardiac failure	4	155	17.1 (1.5-42.2)	
	Shock	3	222	17.4 (0.0, 61.5)	
Renal	Renal insufficiency	5	328	9.8 (0.1-28.7)	

Clinical Characteristics of COVID-19: Meta-analysis

ARDS=Acute Respiratory Distress Syndrome.

COVID-19 Mortality

Overall Hospital:15-20%ICU admission:40%

Age and Mortality<40 yrs:</td><5%</td>70-79 yrs:35%80-89 yrs:>60%

JAMA. 2020 Aug 25;324(8):782-793

COVID-19: Comorbidities and Mortality

Table 1Leadingcomorbidities amongCOVID-19deaths inNY, USA

Comorbidities	Death %
Hypertension	55.4%
Diabetes	37.3%
Hyperlipidemia	18.5%
Coronary artery disease	12.4%
Renal disease	11.0%
Dementia	9.1%
COPD	8.3%
Cancer	8.1%
Atrial fibrillation	7.1%
Heart failure	7.1%

Data reported by hospitals, nursing homes, and other health facilities to the New York State Department of Health, as of April 6, 2020 [26] <u>Comorbidities with</u> <u>greatest associated</u> <u>mortality:</u>

- Cardiovascular disease
- Diabetes
- Renal disease

SN Compr Clin Med. 2020 Jun 25:1-8

COVID-19 Mortality

What can we learn from post-mortem studies?

Cause of death

Pathobiology of COVID-19

<u>COVID-19 Pathology</u> VIRAL TROPISM

- Multiorgan
- <u>Lungs</u>: Viral load tends to be greatest
 - Infects pneumocytes
- <u>Kidneys</u>: Virus infects glomerular epithelium, endothelium, and tubular cells

J Pathol. 2004 Jun;203(2):631-7

ACE2 Expression in the Body: Endothelial Cells

J Pathol. 2004 Jun;203(2):631-7

<u>COVID-19 Pathology</u> ENDOTHELIA

Endothelial cell infection and endotheliitis in COVID-19

Cardiovascular complications are rapidly emerging as a key threat in coronavirus disease 2019 (COVID-19) in addition to respiratory disease. The mechanisms underlying the disproportionate effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on patients with cardiovascular comorbidities however remain incompletely

- ACE2 is expressed in endothelia (found in blood vessels)
 Endothelial cells can be infected by SADS Cell 2 to cells
- Endothelial cells can be infected by SARS-CoV-2 to cause endotheliitis.

Hypothetical mechanism by which SARS-CoV-2 causes endothelial dysfunction

Eur Respir J. 2020 Jul 30;56(1):2001634.

Autopsy Study of 32 COVID-19-infected Persons: THROMBI

		Site	Thrombi $(n = 32)$	Thrombosis and coexisting organ infarction
Ma mic thr •	cro and/or croscopic ombi: 84% Most in lung	Heart Intramyocardial small vessel thrombi Valve-associated thrombi Lungs	6 (19%) 2 (6%)	1
ć	and heart	Small vessel thrombi Large vessel thrombi Both	23 (72%) 11 (34%) 9 (28%)	3 3 3
Ele din	evated D- ner: <mark>69%</mark>	Trachea Thyroid Lymph node Bladder	4 (13%) 3 (9%) 3 (9%) 2 (6%)	1 0 1 0
Pro coa fac	olonged agulation tors	Kidney Prostate Esophageal varices Diaphragm Ovary	2 (6%) 2 (6%) 1 (3%) 1 (3%) 1 (3%)	1 1 0 0 0

Autopsy Study of 32 COVID-19-infected Persons: Multisystem Microscopic Thromboses

Pathobiology. 2020 Sep 17:1-13.

<u>COVID-19 Pathology</u> RESPIRATORY

Autopsy Study of 32 COVID-19-infected Persons: LUNG

Table 4. Pathological characteristics of the lungs

Characteristics	DAD				
	none	exudative	proliferative	both	
Patients	2 (6%)	3 (9%)	3 (9%)	24 (75%)	
Alveolar neutrophils	1	2	2	11	
Organizing pneumonia	0	2	3	8	
Pulmonary edema	0	0	0	8	
Combined lung weights, g ^a	1,630 (1,160-2,100)	1,917 (1,830-2,020)	2,050 (1,540-2,520)	1,804 (1,000-3,110) ^b	
Duration of disease, days	18 (1-36)	9 (7-11)	35 (26-42)	20 (1-58)	
Intubated	0	0	2 (67%)	13 (52%)	
Length of intubation, days	NA	NA	31 (28–33)	15 (1–50)	

Data are presented as n (%) or mean (range). DAD, diffuse alveolar damage; NA, not applicable. ^a Reference range for combined lung weights in adults = 685–1,050 g. ^b Combined weight for the right lung and lung biopsy only cases are not applicable.

• Diffuse alveolar damage (DAD) in most decedents

- *Histologic correlate for acute respiratory distress syndrome (ARDS)*
- Formation of **hyaline membranes** (mix of proteinaceous exudate, surfactant from type II pneumocytes, cellular debris) along alveolar walls, which interfere with gas exchange
- Can progress to organizing pneumonia and pulmonary fibrosis

<u>COVID-19</u> <u>Infection:</u> <u>LUNG</u>

<u>Autopsy of 76 y.o. woman:</u> Diffuse alveolar damage with superimposed bronchopneumonia

N Engl J Med. 2020 Jul 23;383(4):380-387.

SARS-CoV-2 Infection in the LUNG: Immunohistochemistry

Virus detected in:

- Pneumocytes
 - Hyaline membranes
- Macrophages
- Blood vessels

Histopathology. 2020 Jul 2:10.1111/his.14201.

SARS-CoV-2 Infection in the LUNG: Electron Microscopy

A) Infected ciliated cells with strands of mucus attached to the cilia tips.

B) SARS-CoV-2 virions produced by human airway epithelial cells. Virus production was ~3×10⁶ plaque-forming units per culture, a finding consistent with a high number of virions produced and released per cell.

SARS-CoV-2 directly infects pneumocytes.

N Engl J Med. 2020 Sep 3;383(10):969

<u>COVID-19 Pathology</u> CARDIOVASCULAR

Autopsy Study of 32 COVID-19-infected Persons: CARDIOVASCULAR

	Features	Patients $(n = 30)$	Average
Co-morbidities	Clinical findings		
present in most	Coronary artery disease	10 (33%)	
Hypertension	Chronic heart failure	6 (20%)	
Coronary	Hypertension	21 (70%)	
artery disease	Troponin (I) ^a		3.7 (ng/mL)
Chronic heart	Normal	6 (20%)	0.027 (ng/mL)
failure	Elevated	23 (77%)	4.89 (ng/mL)
	Pathologic findings		
	Heart weight ^b		480 (g)
• Pathologic	Normal weight	2 (6%)	350 (g)
findings were	Cardiomegaly	28 (93%)	490 (g)
related to the co-	Histologic features		
morbidities.	Atherosclerosis (>50% stenosis)	17 (57%)	
	Myocyte hypertrophy	24 (80%)	
• No myocarditis	Myocyte ischemia	5 (17%)	
	Interstitial fibrosis	20 (67%)	

^a Normal troponin-I: \leq 0.04 ng/mL. ^b Normal heart weight: male 270–360 g, female 200–280 g.

<u>COVID-19</u> <u>Infection:</u> <u>HEART</u>

<u>Autopsy of</u> 76 y.o. woman:

- Focal myocardial inflammation
- No myocardial injury
- Not sufficient for a diagnosis of myocarditis

Focal infiltration by lymphocytes

N Engl J Med. 2020 Jul 23;383(4):380-387.

Autopsy Study of 39 COVID-19-infected Persons: CARDIOVASCULAR

<u>Methods</u>

- N=39 COVID-19+ autopsies (detected by NP swabbing)
- Conducted PCR on myocardial tissue for SARS-CoV-2

<u>Results</u>

- Some cases have detectable virus by RT-PCR: in situ hybridization showed that the infection involved interstitial cells (macrophages)
- Infection did not occur in cardiac myocytes.

Autopsy Study of 39 COVID-19-infected Persons: CARDIOVASCULAR

<u>COVID-19 Pathology</u> RENAL

Autopsy Study of 32 COVID-19-infected Persons: RENAL

	Feature	Patients $(n = 32)$	Notes
o-morbidities present in most	Clinical findings Diabetes/pre-diabetes Hypertension Obesity Acute kidney injury Requiring renal replacement therapy Creatinine, mg/dL Proteinuria	20 (63%) 23 (72%) 10 (31%) 16 (53%) 5 (17%) Range: 0.66–9.61 (<i>n</i> = 29) 9 (50%) (<i>n</i> = 18)	$n = 30^{a}$ $n = 30^{a}$ Mean 1.7 None quantitated
Diabetes Chronic kidnev disease	Pathologic findings (n = 28) ^b Diabetic nephropathy	14 (50%)	
	Diffuse mesangial glomerulosclerosis Nodular mesangial glomerulosclerosis	11 (39%) 3 (11%)	
<i>Cute Changes</i> Acute tubular necrosis Complement-mediated <u>endothelial</u> injury (up to 67%)	Other diagnoses Obesity related glomerulopathy Papillary Necrosis Thrombotic microangiopathy Atheroembolic disease Pilatorel information	2 2 2 1	
	Global glomerulosclerosis Interstitial fibrosis and tubular atrophy <25% 26–50%	1 5–95% 16 (57%) 7 (25%)	Mean 22.7% ^b
Minimal inflammation	>50% Vascular sclerosis Mild Moderate Severe C5b-9 immunohistochemical staining	5 (18%) 6 (21%) 10 (36%) 12 (43%)	
	Cases in arterioles Cases in glomeruli	67% 21%	

Pathobiology. 2020 Sep 17:1-13.

С

Α

^a Two ESRD patients excluded. ^b Excludes ESRD and chest only autopsies.

<u>COVID-19 Pathology</u> HEPATOCELLULAR

Autopsy Study of 32 COVID-19-infected Persons: Hepatocellular

- Co-morbidities present (61% of decedents)
 - Steatosis (secondary to obesity, diabetes, and/or hyperlipidemia)
 - Chronic liver disease (bridging fibrosis and/or cirrhosis)
- No direct hepatocyte injury by SARS-CoV-2

<u>COVID-19 Pathology</u> CENTRAL NERVOUS SYSTEM

Autopsy Study of 4 COVID-19-infected Persons: BRAIN

Table 1. COVID-19 patient characteristics and neuropathological findings with RT-PCR and IHC results.

	Case 1	Case 2	Case 3	Case 4
Sex	Male	Male	Male	Female
Age (years)	63	82	38	90
Symptom-onset to death (days)	25	6	23	26
Death to autopsy (days)	7	6	10	5
Treatment at ICU (days)	2	0	14	0
Medical history	HTN, Gout, CKD with one functional kidney, Smoker	SSS with pacemaker, CAD with MI, PAD, Stroke, DM2, COPD, CRC, CKD	Obesity, HTN, DM2 with retinopathy & polyneuropathy, Recurrent cellulitis, Smoker	HTN, SSS with pacemaker, Asthma/ COPD, AD, Osteoporosis, Spinal stenosis, Recurrent lung infections
Blood group	A RhD+	A RhD+	A RhD+	N/A
HLA-type	N/A	N/A	HLA-DRB1	N/A
Neurologic symptoms Neuropathologic findings	Ageusia, delirium during ICU stay Hypoxic injury (mild), mild perivascular degeneration and scattered inflammatory cells	Non reported Hypoxic injury (mild), perivascu- lar degeneration, lacunar infarctions (old)	Delirium, unconsciousness Severe hypoxic injury, vasculopathy with perivascular hemorrhage and degeneration, white matter lesions, PD	Delirium, unconsciousness Hypoxic injury, perivascular degenera- tion, 2 tiny foci with some axonal spheroids, AD (Braak 5, CERAD Moderate), CAA, Limbic predominant

Various hypoxia-associated neuropathological features

No evidence of viral neurotropism or encephalitis

Brain Pathol. 2020 Aug 6:10.1111/bpa.12889.

<u>Autopsy Study of</u> <u>4 COVID-19-</u> <u>infected Persons:</u> <u>BRAIN</u>

- Microhemorrhages in the white matter and deep gray matter
- Perivascular inflammation and perivascular hemorrhage, but very few inflammatory cells in the surrounding brain areas.

Brain Pathol. 2020 Aug 6:10.1111/bpa.12889.

- All had histologic evidence of acute hypoxic ischemic damage
- qRT-PCR of brain tissue were either equivocal or did not detect the virus
- Immunohistochemical analyses of brain tissue did not detect the virus.
- No encephalitis

Table 1. Gros	Table 1. Gross Findings and Results of Histologic Analysis to Detect SARS-CoV-2.*					
Patient No.	Days from Symptom Onset to Death	Hours from Death to Autopsy		Gross Inspection	Histologic Analysis	
			Brain Volume	Observations		
			grams			
1	20	52	1290	No gross abnormalities	Acute hypoxic ischemic damage, mild arteriolosclerosis	
2	6	32	1460	Moderate atherosclerosis	Acute hypoxic ischemic damage	
3	12	21	1210	Moderate atherosclerosis, chronic infarcts	Acute hypoxic ischemic damage, chronic infarcts, mild arteriolosclerosis	
4	6	36	1150	Moderate-to-severe atherosclerosis, pale sub- stantia nigra and locus coeruleus	Acute hypoxic ischemic damage, moderate arterioloscle rosis, pathological features of Lewy body disease and Alzheimer's disease	
5	9	40	1460	No gross abnormalities	Acute hypoxic ischemic damage	
6	0	77	1330	Mild atherosclerosis	Acute hypoxic ischemic damage, moderate arterioloscle- rosis, focal leptomeningeal chronic inflammation	
7	2	54	1300	Moderate atherosclerosis, cortical atrophy	Acute hypoxic ischemic damage, mild arteriolosclerosis, pathological features of Alzheimer's disease	
8	2	32	1350	Moderate atherosclerosis, chronic infarcts	Acute hypoxic ischemic damage, chronic infarcts, mod- erate arteriolosclerosis	
9	23	23	1330	Mild atherosclerosis	Acute hypoxic ischemic damage, mild arteriolosclerosis	
10	7	21	1120	Moderate atherosclerosis, anaplastic astrocy- toma tumor resection cavity	Acute hypoxic ischemic damage, recurrent or residual anaplastic astrocytoma	
11	26	41	1090	No gross abnormalities	Acute hypoxic ischemic damage, Alzheimer's type II astrocytosis	
12	6	45	1130	Mild atherosclerosis, pale substantia nigra	Acute hypoxic ischemic damage, mild arteriolosclero- sis, pathological features of Lewy body disease and Alzheimer's disease	
13	12	61	1300	No gross abnormalities	Acute hypoxic ischemic damage, mild arteriolosclerosis, focal perivascular chronic inflammation, Alzheimer's type II astrocytosis	
14	0	102	1650	Moderate atherosclerosis	Acute hypoxic ischemic damage, moderate arterioloscle rosis	
15	8	20	1530	Moderate atherosclerosis	Acute hypoxic ischemic damage, mild arteriolosclerosis Alzheimer's type II astrocytosis	
16	32	31	1150	Moderate atherosclerosis, chronic infarcts	Acute hypoxic ischemic damage, chronic infarcts, mild arteriolosclerosis	
17	7	25	1300	Moderate atherosclerosis	Acute hypoxic ischemic damage, moderate arteriolo- sclerosis, focal perivascular chronic inflammation, pathological features of Alzheimer's disease	
18	9	26	1350	Mild atherosclerosis	Acute hypoxic ischemic damage, single microglial nod- ule, Alzheimer's type II astrocytosis	

* The results of immunohistochemical analysis to detect SARS-CoV-2 were negative in all the patients.

<u>Summary:</u>

- Patients with COVID-19 have a variety of clinical findings
 - Especially involving the respiratory system
- SARS-CoV-2 has multiorgan tropism
 - Lung >> Pharynx, Kidneys, Liver, Heart >> Brain, Blood
- Autopsies show two patterns of injury
 - Chronic (co-morbidities, not caused by the virus)
 - Acute
 - Widespread thrombi
 - Direct injury in lung, due to SARS-CoV-2 / diffuse alveolar damage
 - Prominent inflammation is not observed in kidneys, liver, heart, brain

Q&A

CREATING A HEALTHIER HAWAI'I

HAWAI'I PACIFIC HEALTH

HAWAI'I HEALTH PARTNERS

Save the Date! HHP 7th Annual Membership Meeting

- Saturday, November 7, 2020
 - 8:00 a.m. to 12:30 p.m.
- Physician Planning Committee
- Virtual meeting
- Community giveback project
 - Blood Bank of Hawai'i
 - Hawai'i Food Bank
 - Aloha United Way
 - Child & Family Services
- Details & updates forthcoming:
 - HHP website under "For Providers/Events Calendar"
 - HPH eConnect, "Hawai'i Health Partners" channel
 - Emailed via Info@hawaiihealthpartners.org

CREATING A HEALTHIER HAWAI'I
Thank you!

- A recording of the meeting will be available afterwards.
- Unanswered question?
 - Contact us at Covid19Bulletin@hawaiipacifichealth.org

HAWAI'I PACIFIC HEALTH

HAWAI'I HEALTH PARTNERS

CREATING A HEALTHIER HAWAI'I